Acid-base properties of the N3 ruthenium(II) solar cell sensitizer: a combined experimental and computational analysis.
نویسندگان
چکیده
We report a combined spectro-photometric and computational investigation of the acid-base equilibria of the N3 solar cell sensitizer [Ru(dcbpyH(2))(2)(NCS)(2)] (dcbpyH(2) = 4,4'-dicarboxyl-2,2' bipyridine) in aqueous/ethanol solutions. The absorption spectra of N3 recorded at various pH values were analyzed by Single Value Decomposition techniques, followed by Global Fitting procedures, allowing us to identify four separate acid-base equilibria and their corresponding ground state pK(a) values. DFT/TDDFT calculations were performed for the N3 dye in solution, investigating the possible relevant species obtained by sequential deprotonation of the four dye carboxylic groups. TDDFT excited state calculations provided UV-vis absorption spectra which nicely agree with the experimental spectral shapes at various pH values. The calculated pK(a) values are also in good agreement with experimental data, within <1 pK(a) unit. Based on the calculated energy differences a tentative assignment of the N3 deprotonation pathway is reported.
منابع مشابه
A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells.
A dye-sensitized solar cell (DSSC) using Ru complexes as a photosensitizer was first reported by O Regan and Gr"tzel in 1991. The low-cost, easy preparation make DSSC one of the most promising photovoltaic cells for conversion of sunlight to electricity. Numerous sensitizers have been prepared, and their performance has been tested. A conversion efficiency of up to 11% was achieved by using cis...
متن کاملSynthesis and Application of Two Organic Dyes Based on Indoline in Dye-Sensitized Solar Cells
In this paper we sensitized two new organic days dye 1 and dye 2 based on thioindigo with phenothiazine as the electron donor group. We used acrylic acid and cyanoacrylic acid as the electron acceptor anchoring group in dye 1 and dye 2 respectively. The proposed dyes were sensitized from phenothiazine as the starting material by standard reactions and characterized by different techniques such ...
متن کاملLigand Engineering for the Efficient Dye-Sensitized Solar Cells with Ruthenium Sensitizers and Cobalt Electrolytes.
Over the past 20 years, ruthenium(II)-based dyes have played a pivotal role in turning dye-sensitized solar cells (DSCs) into a mature technology for the third generation of photovoltaics. However, the classic I3(-)/I(-) redox couple limits the performance and application of this technique. Simply replacing the iodine-based redox couple by new types like cobalt(3+/2+) complexes was not successf...
متن کاملElectron-rich heteroaromatic conjugated bipyridine based ruthenium sensitizer for efficient dye-sensitized solar cells.
A novel heteroleptic ruthenium complex carrying a heteroaromatic-4,4'-pi-conjugated 2,2'-bipyridine [Ru(II)LL'(NCS)(2)] (L = 4,4'-bis[(E)-2-(3,4-ethylenedioxythien-2-yl)vinyl]-2,2'-bipyridine, L' = 4,4'-(dicarboxylic acid)-2,2'-bipyridine) was synthesized and used in dye-sensitized solar cells, yielding photovoltaic efficiencies of 9.1% under standard global AM 1.5 sunlight.
متن کاملA New Route to Enhance the Light-Harvesting Capability of Ruthenium Complexes for Dye-Sensitized Solar Cells
Dye-sensitized solar cells (DSCs) have been explored for more than a decade for realistic photovoltaic applications owing to their high conversion efficiency and low cost. Molecular engineering of the sensitizers to achieve high photovoltaic performance and long-term device stability is one of the critical strategies. Since the first high-efficiency ruthenium-based sensitizer, cis-di(thiocyanat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 41 38 شماره
صفحات -
تاریخ انتشار 2012